
Cliquez et modifiez le titre de votre présentation

PROJET COFFI
ANR-18-CES39-003

Anthony ZGHEIB
Journée thématique sur les attaques par 

injection de fautes
23 Septembre 2021

VERIFICATION OF THE PROGRAM’S CFI BASED 
ON A TRACE ENCODER

JAIF
Intégrité du flot d’exécution du logiciel à la micro-architecture

Anthony ZGHEIB

Mines Saint-Etienne

September 2021

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 1 / 24



Table of Contents

1 Introduction

2 Methodology to verify the program’s CFI

3 Exploited approaches

4 Results

5 Perspectives

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 2 / 24



Table of Contents

1 Introduction

2 Methodology to verify the program’s CFI

3 Exploited approaches

4 Results

5 Perspectives

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 3 / 24



Introduction

Why is it necessary to guarantee the program’s CFI?

Software attacks : Buffer Overflow, ROP, Code Reutilization Attacks...
Hardware attacks : Fault Injection...
Example - Code pin verification :

1
2

3

CFI Verification = Correct Program Execution.

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 4 / 24



Table of Contents

1 Introduction

2 Methodology to verify the program’s CFI

3 Exploited approaches

4 Results

5 Perspectives

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 5 / 24



How could we verify the program’s CFI?

Methodology
Get information about what is executed at the RISC-V core level =>
Trace Encoder (TE)
Compare these data to static data obtained from a static analysis of
the binary program => Trace Verifier (TV)
Detect if a fault injection attack is made => TV’s output

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 6 / 24



Trace Encoder

Definition
Module designed by the RISC-V community.

Overall objective: Compression of the program’s execution path.

Interpret the executed instructions from the RISC-V core.

Report the discontinuities present in a program in the form of packets.
Instructions presenting an uninferable PC discontinuity.
Interruptions and exceptions...

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 7 / 24



Packet generation example

Example of a packet - Use Case
Having a function call where the program encounter n branches.
A packet will be sent containing : the number of branches (n), the
branch map (branch taken or not) and the return address ...

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 8 / 24



Packet generation example

1
2

3

Fnct1 call

0

1

Fnct1 return

0

Example (Generated packet)
Number of branches : 3
Branch Map : 010
Return address

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 9 / 24



Packet generation example

1

2

3

Fnct1 call

0

1

Fnct1 return

0

Example (Generated packet)
Number of branches : 3
Branch Map : 010
Return address

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 9 / 24



Packet generation example

1
2

3

Fnct1 call 0

1

Fnct1 return

0

Example (Generated packet)
Number of branches : 3
Branch Map : 010
Return address

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 9 / 24



Packet generation example

1
2

3

Fnct1 call 0

1

Fnct1 return

0

Example (Generated packet)
Number of branches : 3
Branch Map : 010
Return address

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 9 / 24



Packet generation example

1
2

3

Fnct1 call 0

1

Fnct1 return

0

Example (Generated packet)
Number of branches : 3
Branch Map : 010
Return address

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 9 / 24



Packet generation example

1
2

3

Fnct1 call 0

1

Fnct1 return

0

Example (Generated packet)
Number of branches : 3
Branch Map : 010
Return address

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 9 / 24



Trace Verifier

It’s verification system based on the TE sent packets.

Compare the TE packets to static data issued from a static analysis of
the binary program.

A static analysis is made after the compilation process.
Branch, jump, call and return instructions with their addresses are
stored in a memory.

A flag is raised when a fault is detected.

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 10 / 24



Table of Contents

1 Introduction

2 Methodology to verify the program’s CFI

3 Exploited approaches

4 Results

5 Perspectives

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 11 / 24



Exploited solution - Architecture

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 12 / 24



First approach - ASIC RISC-V Model

Fnct1 call

Fnct1 return (packet sent)

FI

Return(packet sent)

Verification process starts when
a packet is sent.
Navigation through the static
data and constitution of the
path followed by the program.
Comparison process.

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 13 / 24



First approach - ASIC RISC-V Model

Fnct1 call

Fnct1 return (packet sent)

FI

Return(packet sent)

Verification process starts when
a packet is sent.
Navigation through the static
data and constitution of the
path followed by the program.
Comparison process.

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 13 / 24



First approach - ASIC RISC-V Model

Fnct1 call

Fnct1 return (packet sent)

FI

Return(packet sent)

Verification process starts when
a packet is sent.
Navigation through the static
data and constitution of the
path followed by the program.
Comparison process.

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 13 / 24



First approach - FI detection

Fault coverage
Changing the return address of a function.
Instruction skip on a function call.

Particular cases

Instruction skip on
branch instructions.
It depends on the branch
number and return
address.

FI

FI

Limitations
Corruption of a branch instruction (funct3, branch address ...).

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 14 / 24



First approach - FI detection

Fault coverage
Changing the return address of a function.
Instruction skip on a function call.

Particular cases

Instruction skip on
branch instructions.
It depends on the branch
number and return
address.

FI

FI

Limitations
Corruption of a branch instruction (funct3, branch address ...).

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 14 / 24



First approach - FI detection

Fault coverage
Changing the return address of a function.
Instruction skip on a function call.

Particular cases

Instruction skip on
branch instructions.
It depends on the branch
number and return
address.

FI

FI

Limitations
Corruption of a branch instruction (funct3, branch address ...).

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 14 / 24



Second approach - Adding the PC - RISC-V FPGA Model

Features
We pull the PC and connect it to the TV.
Calculation is made before receiving the packet.
Verification process is faster compared to the first approach.

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 15 / 24



Second approach - FI detection

Fault coverage

Changing the return address of a
function.
Instruction skip on a function
call and branch instruction.

Total number of branches=4.

FI

Particular cases
Changing the branch address in case it was taken : beq a4,a5,180.

Limitations
Corruption of a branch instruction (funct3, branch address ...).

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 16 / 24



Third approach - Redefining the TE RISC-V standard

Features
PC and executed instructions are pulled and connected to the TV.
Adjustment to the TE RISC-V standard by defining the qualified
instructions (jump, branch, return...).
Packet is sent after each qualified instruction.

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 17 / 24



Third approach - FI detection

Fault coverage
Changing the return address of a call function.

Instruction skip on a function call and branch instruction.

Their corruption / substitution with other instructions.

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 18 / 24



Table of Contents

1 Introduction

2 Methodology to verify the program’s CFI

3 Exploited approaches

4 Results

5 Perspectives

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 19 / 24



Results - Comparison between the 3 approaches

Each approach covers a specific number of threats :

Approach SFC RAC SBI CDI L
TV-ASIC (X) X - -
TV-FPGA-PC X -
TE-TV-CFI +

SFC : Skip on function calls.
RAC : Return address change.
SBI : Skip on branch instructions.
CDI : Corruption of a discontinuity instruction.
L : Latency.

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 20 / 24



Conclusion - Comparison between the 3 approaches

Hardware Area Overhead (in terms of slices) :

Approach TE TV Total
TV-ASIC 241 360 601
TV-FPGA-PC 241 641 882
TE-TV-CFI 95 575 670

RISC-V IBEX : 635 slices.

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 21 / 24



Table of Contents

1 Introduction

2 Methodology to verify the program’s CFI

3 Exploited approaches

4 Results

5 Perspectives

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 22 / 24



Perspectives

Definition of a new packet for the basic blocks’ verification, by
adjusting the TE’s standard.

Verification of the correct instructions execution in the processor
pipeline (cf. COFFI Project).

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 23 / 24



Cliquez et modifiez le titre de votre présentation

Thank you for
your attention 

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 24 / 24


	Introduction
	Methodology to verify the program's CFI
	Exploited approaches
	Results
	Perspectives

