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Introduction

Why is it necessary to guarantee the program’s CFI?

Software attacks : Buffer Overflow, ROP, Code Reutilization Attacks...
Hardware attacks : Fault Injection...
Example - Code pin verification :

1
2

3

CFI Verification = Correct Program Execution.

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 4 / 24



Table of Contents

1 Introduction

2 Methodology to verify the program’s CFI

3 Exploited approaches

4 Results

5 Perspectives

Anthony ZGHEIB (Mines Saint-Etienne) JAIF September 2021 5 / 24



How could we verify the program’s CFI?

Methodology
Get information about what is executed at the RISC-V core level =>
Trace Encoder (TE)
Compare these data to static data obtained from a static analysis of
the binary program => Trace Verifier (TV)
Detect if a fault injection attack is made => TV’s output
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Trace Encoder

Definition
Module designed by the RISC-V community.

Overall objective: Compression of the program’s execution path.

Interpret the executed instructions from the RISC-V core.

Report the discontinuities present in a program in the form of packets.
Instructions presenting an uninferable PC discontinuity.
Interruptions and exceptions...
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Packet generation example

Example of a packet - Use Case
Having a function call where the program encounter n branches.
A packet will be sent containing : the number of branches (n), the
branch map (branch taken or not) and the return address ...
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Packet generation example

1
2

3

Fnct1 call

0

1

Fnct1 return

0

Example (Generated packet)
Number of branches : 3
Branch Map : 010
Return address
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Trace Verifier

It’s verification system based on the TE sent packets.

Compare the TE packets to static data issued from a static analysis of
the binary program.

A static analysis is made after the compilation process.
Branch, jump, call and return instructions with their addresses are
stored in a memory.

A flag is raised when a fault is detected.
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Exploited solution - Architecture
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First approach - ASIC RISC-V Model

Fnct1 call

Fnct1 return (packet sent)

FI

Return(packet sent)

Verification process starts when
a packet is sent.
Navigation through the static
data and constitution of the
path followed by the program.
Comparison process.
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First approach - FI detection

Fault coverage
Changing the return address of a function.
Instruction skip on a function call.

Particular cases

Instruction skip on
branch instructions.
It depends on the branch
number and return
address.

FI

FI

Limitations
Corruption of a branch instruction (funct3, branch address ...).
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Second approach - Adding the PC - RISC-V FPGA Model

Features
We pull the PC and connect it to the TV.
Calculation is made before receiving the packet.
Verification process is faster compared to the first approach.
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Second approach - FI detection

Fault coverage

Changing the return address of a
function.
Instruction skip on a function
call and branch instruction.

Total number of branches=4.

FI

Particular cases
Changing the branch address in case it was taken : beq a4,a5,180.

Limitations
Corruption of a branch instruction (funct3, branch address ...).
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Third approach - Redefining the TE RISC-V standard

Features
PC and executed instructions are pulled and connected to the TV.
Adjustment to the TE RISC-V standard by defining the qualified
instructions (jump, branch, return...).
Packet is sent after each qualified instruction.
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Third approach - FI detection

Fault coverage
Changing the return address of a call function.

Instruction skip on a function call and branch instruction.

Their corruption / substitution with other instructions.
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Results - Comparison between the 3 approaches

Each approach covers a specific number of threats :

Approach SFC RAC SBI CDI L
TV-ASIC (X) X - -
TV-FPGA-PC X -
TE-TV-CFI +

SFC : Skip on function calls.
RAC : Return address change.
SBI : Skip on branch instructions.
CDI : Corruption of a discontinuity instruction.
L : Latency.
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Conclusion - Comparison between the 3 approaches

Hardware Area Overhead (in terms of slices) :

Approach TE TV Total
TV-ASIC 241 360 601
TV-FPGA-PC 241 641 882
TE-TV-CFI 95 575 670

RISC-V IBEX : 635 slices.
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Perspectives

Definition of a new packet for the basic blocks’ verification, by
adjusting the TE’s standard.

Verification of the correct instructions execution in the processor
pipeline (cf. COFFI Project).
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